Đăng bởi: lety | 14/07/2009

Bài test toán 12, chương 1

Các bạn bấm vào đây để lấy Đề bài nhé

Advertisements

Responses

  1. kinh gui thay em co mot bai toan nho thay giai dap:sin^8+cos^8=64(sin^14+cos^14)

    • Trước hết em hãy trả kết quả bài test, còn bài PT lượng giác em hãy suy nghĩ xem nó có tính chất đối xứng đỗi với sinx và cosx không, hãy tìm lại PP giải PT loại này. Ngoài ra nhân đây mình ôn lại luôn các kỹ thuật hạ bậc cho phương trình. Em hãy cố gắng hết sức mình. Hoan nghênh em đã chăm chỉ và đã giao tiếp được qua diễn đàn này. Kí hiệu sin^8 trong ý kiến của em ở trên phải soạn thảo đầy đủ là sin^8(x), và em cũng nên trao đổi rộng rãi với bạn bè về bài toán này nhé.

  2. Để mình thử giúp bạn Duc Toi viết lại phương trình theo đúng cách:
    \sin^{8}{x}+\cos^{8}{x}=64(\sin^{14}{x}+\cos^{14}{x})

  3. kinh gui thay dasp an cua em la:1d,2b,3b,4d,5a,6c,7b,8b,9a,10d,11a,12c,13a,14b,15b,16a,17d,18a,19c,20d

    • Em làm đúng được 16/20 câu.Đánh giá: Khá. Các câu phải làm lại là: 2, 8, 16, 17.

  4. Giải đáp bài PTLG. Lời giải sau đây chỉ là một trong nhiều giải pháp cho bài toán. Các bạn hãy nêu ý kiến phê bình cho nó nhé.
    Đề bài: Giải phương trình
    \sin ^8 x + c{\rm{os}}^{\rm{8}} x = 64(\sin ^{14} x + \cos ^{14} x)
    Lời giải:
    Ta có
    \sin ^8 x + c{\rm{os}}^{\rm{8}} x = 64(\sin ^{14} x + \cos ^{14} x) \Leftrightarrow \\ \sin ^8 x(1 - 64\sin ^6 x) + \cos ^8 x(1 - 64\cos ^6 x) = 0 \Leftrightarrow \\ (2\sin x)^8 [1 - (2\sin x)^6 ] + (2\cos x)^8 [1 - (2\cos x)^6 ] \\ = 0. Đặt u = (2\sin x)^2 ;{\rm{   }}v = (2\cos x)^2 thì :u,v \ge 0;{\rm{   }}u + v = 4 và phương trình trở thành:
    u^4 (1 - u^3 ) + v^4 (1 - v^3 ) = 0. Từ đây ta có nhận xét:
    Trong hai số u, v phải có một số lớn hơn hoặc bằng 2 và một số nhỏ hơn hoặc bằng 1. Giả sử u \ge 2;{\rm{     }}v \le 1
    Thế thì u^4 (1 - u^3 ) \le -112,{\rm{     }}0 \le v^4 (1 - v^3 ) \le 1.
    Vậy PT cuối không thể được nghiệm đúng. KL: PT vô nghiệm.


Trả lời

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Đăng xuất / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Đăng xuất / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Đăng xuất / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Đăng xuất / Thay đổi )

Connecting to %s

Chuyên mục

%d bloggers like this: